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Abstract
In this paper we study the propagation of light through an asymmetric array of dielectric
multilayers built by joining two porous silicon substructures in a Fibonacci sequence. Each
Fibonacci substructure follows the well-known recursive rule but in the second substructure
dielectric layers A and B are exchanged. Even without mirror symmetry, this array gives rise to
multiple transparent states, which follow the scaling properties and self-similar spectra of a
single Fibonacci multilayer. We apply the transfer matrix formalism to calculate the
transmittance. By setting the transfer matrix of the array equal to ±I , the identity matrix,
frequencies of perfect light transmission are reproduced in our theoretical calculations.
Although the light absorption of porous silicon in the optical range limits our experimental
study to low Fibonacci generations, the positions of the transparent states are well predicted by
the above-mentioned condition. We conclude that mirror symmetry in arrays of Fibonacci
multilayers is sufficient but not necessary to generate multiple transparent states, opening
broader applications of quasiperiodic systems as filters and microcavities of multiple
frequencies.

1. Introduction

Quasicrystals are perfect non-periodically ordered materials
with a long-range symmetry that show interesting electronic
properties such as self-similar spectra and critical states.
They do not present either extended Bloch-like states, as in
periodic crystals, or localized states, as in random systems [1].
Their wavefunctions are not localized exponentially but only
weakly localized and have a rich structure including scaling
with various indexes, i.e. a multifractal nature [2]. To
fully appreciate the specific features of quasiperiodic systems
arising from their fractal nature, the study of classical waves in
one dimension offers a number of advantages over the study of
quantum elementary excitations since the presence of electron–
phonon, electron–electron, or spin–orbit interaction analysis is
difficult to include [3]. Within this approach, Kohmoto et al
[3, 4] proposed dielectric multilayers in the Fibonacci sequence
to study light localization and showed that the transmission
coefficient has a multifractal spectrum due to its non-periodic
long-range order. These results spurred interest both for optical

3 On sabbatical leave from: Instituto de Fı́sica, Universidad Nacional
Autónoma de México, AP 20-364, 01000 México DF, Mexico.

applications [5, 6] and theoretical aspects of light transmission
in quasiperiodic media [7–11] pointing towards the possible
localization of light by the effect of the quasiperiodic order.

Following these ideas, Iguchi [12] and later Maciá [10]
provided further evidence of the rich behavior of light
propagating through quasiperiodic media. They found that
when the light phase inside each layer is equal to nπ , the
transfer matrices of a Fibonacci dielectric multilayer commute
and transparent states appear. This means that any sequence
at the corresponding frequency shows transparent states as a
result of local resonances. However, transparent states can
be present at different light phase conditions. For example,
Huang et al [13] proposed an interesting array of two Fibonacci
dielectric multilayers with internal mirror symmetry. Multiple
perfect transmission peaks are found, which preserve the
self-similarity of the transmission spectra and scaling factor
of single Fibonacci dielectric multilayers. They suggested
that the transparent states are a consequence of the internal
mirror symmetry of the structure [14]. From the theoretical
point of view, perfect transmission peaks are a manifestation
of extended optical states present in quasiperiodic systems.
Within this context, He et al [15] calculated the transmission
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spectra of symmetrical Fibonacci superlattices composed of
positive and negative refractive index materials and they
consider that localized states exist because mirror symmetry
structure favors wave interference. Recently, Mauriz et al
[16] studied the transmission properties of light through the
symmetric Fibonacci photonic multilayers, made up of both
positive (SiO2) and negative refractive index materials with a
mirror symmetry, in which many perfect transmission peaks
are numerically obtained and the transmission coefficient
exhibits a six-cycle self-similar behavior. Generally speaking,
there is an increasing interest in the development of photonic
bandgap materials that transmit light in a narrow wavelength
without losses [17]. Up to date, the best structures to
perform this task are those with highly symmetrical Brillouin
zones [17]. Although strictly speaking quasiperiodic structures
do not exhibit Brillouin zones, they have an effective high
symmetry averaged Brillouin zone. This idea has been tested
in a tridimensional Penrose tiling made of a polymer for
electromagnetic radiation in the microwave range [18]. Also,
the propagation dynamics of waves in an optical quasicrystal
have been studied using lasers in a photosensitive material [19],
and theoretical studies have shown that quasiperiodicity can be
used to build high reflectance cavities [20]. Such experiments
and ideas suggest that quasiperiodic structures have a great
potential in optical applications.

Encouraged by these results, we wanted to understand
the origin of transparent states in Fibonacci arrays and
proposed a structure of Fibonacci dielectric multilayers built
by joining two Fibonacci sequences without internal symmetry.
Surprisingly we found multiple transparent states similar to
those obtained in multilayers with mirror symmetry, but at
different positions in the transmittance spectrum. Furthermore,
the asymmetric arrays preserve self-similar spectra with the
scaling factor predicted by Kohmoto et al for a single
Fibonacci dielectric multilayer [21]. By applying the transfer
matrix formalism to the asymmetric Fibonacci array, light
phases with perfect transmission are found when the transfer
matrix is equal to the identity matrix (±I ). These results
provide evidence that the mirror symmetry is sufficient but not
necessary to generate multiple transparent states in Fibonacci
dielectric arrays.

In this study, porous silicon (PS) multilayers were
produced to see experimentally the light propagation through
asymmetric Fibonacci arrays. PS is a nanostructured material
prepared by the electrochemical etching of crystalline silicon
in an HF solution [22]. This process gives rise to a sponge-like
structure with a crystalline skeleton surrounded by air. The
fact that the electrochemical attack is self-limiting and occurs
mainly in correspondence with pore tips allows us to build
blocks of different porosity by alternating the applied currents,
therefore alternating different refractive indexes [23, 24].

In section 2, the proposed asymmetric array of dielectric
layers following the Fibonacci sequence as well as the transfer
matrix formalism used to study the light propagation through
these structures are described. In section 3, the experimental
procedure to produce an asymmetric Fibonacci multilayer
made of PS is given. In section 4 the theoretical and
experimental results are presented. Finally, in section 5 the
conclusions of this work are summarized.

2. Theory

In order to describe light propagation through a dielectric
structure following a Fibonacci sequence, we use the classical
model of the transfer matrix [25] and the notation introduced
by Kohmoto et al [3, 4]. Let us consider that the multilayer is
composed of two types of dielectric materials A and B, with
refractive index and thickness ηA, ηB, dA, and dB respectively.
An asymmetric array can be built by joining two substructures
following the Fibonacci sequence. Each substructure follows
the well-known recursive rule Fj = {Fj−1, Fj−2} for j > 1.
That is, the first Fibonacci substructure (Fj ) starts with F0 =
{B} and F1 = {A}, such that F2 = {AB}, F3 = {ABA},
F4 = {ABAAB}, and so on. In the second substructure the
same recursive formula is applied but we exchange A ⇔ B,
which we call ‘conjugated Fibonacci’ (C j ). In this way,
C j = {C j−1, C j−2}, with C0 = {A} and C1 = {B},
such that C2 = {BA}, C3 = {BAB}, C4 = {BABBA},
etc. Now, the asymmetric array is constructed by joining
the two substructures as Sj = {Fj | C j }, such that one
has S0 = {B | B}, S1 = {A | A}, S2 = {AB | BA},
S3 = {ABA | BAB}, S4 = {ABAAB | BABBA}, etc. The
number of layers of the joined array is twice the Fibonacci
number (2, 4, 6, 10, 16, . . .). Notice that in general there is no
internal mirror symmetry with respect to the joining interface,
denoted symbolically by (|). It is worth mentioning that if
the conjugate Fibonacci multilayer is constructed by inverting
from the last layer to the first one, that is C j = {C j−2, C j−1},
and joining it to Fj , then there is an internal mirror symmetry,
similar to the structure already studied by Huang et al [13, 14].

Now, let us consider the propagation of light with a
polarization perpendicular to the light path (TE wave). Within
the transfer matrix formalism [3, 25], the light propagation
across the interface between layer A and layer B is given by
the matrices:

TA|B =
(

1 0
0 u−1

)
(1)

and
TB|A = T −1

A|B, (2)

where u = ηA cos θA/ηB cos θB, with θA and θB being the
incidence angle at layers A and B respectively. At normal
incidence, u is a measure of the refractive index contrast
between the dielectrics. Now, the light propagation within each
layer A (or B) is expressed as

TA(B) =
(

cos δA(B) − sin δA(B)

sin δA(B) cos δA(B)

)
, (3)

where δA(B) = 2πdA(B)ηA(B)/λ cos θA(B) is the light phase
difference in layers A (or B). In this way, the light propagation
through the entire multilayer can be described by the transfer
matrix (M), which is the product of the interface matrices (TA|B
and TB|A) and the internal matrices (TA and TB). From M , the
transmittance (T ) and reflectance (R) are calculated as [3]

T = 4

|M|2 + 2 det(M)
(4)
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and

R = |M|2 − 2 det(M)

|M|2 + 2 det(M)
, (5)

where |M|2 is the sum of the squares of the four elements of
the transfer matrix M and det(M) is the determinant of M .

At this step it is convenient to use renormalized transfer
matrices by defining QA and QB as

QA = TA (6)

and

QB = TA|BTBTB|A =
(

cos δB −u sin δB

u−1 sin δB cos δB

)
. (7)

Notice that QA and QB are unimodal matrices, thus the
determinant of their product is also unimodal, which simplifies
the calculation of T and R. Without loss of generality, one
can consider a finite Fibonacci multilayer inside a media A,
such that the transfer matrices of the Fibonacci and Fibonacci
conjugate generations are given by the recursive formula

QFj = QFj−1 QFj−2 (8)

and
QC j = QC j−1 QC j−2 . (9)

In this way, the transfer matrix of the asymmetric array is
expressed as

MS j = QFj QC j , (10)

with the initial conditions QF0 = QC1 = QB and QF1 =
QC0 = QA.

By using the fact that det(MS j ) = 1, the transmittance can
be expressed in terms of the trace x = (m11 + m22) and the
antitrace y = (m12 − m21) of the transfer matrix M as

T = 4

x2 + y2
. (11)

From this last equation, it can be seen that one possible
solution for a perfect transmission (T = 1) can occur when
x = ±2 and y = 0. A matrix that satisfies this condition
is the identity matrix ±I . This means that at the position of
some perfect transmission peaks, QFj = ±Q−1

C j
. It is worth

mentioning that in general QFj �= ±Q−1
C j

, only at some light
phases δ is the transfer matrix MS j equal to the identity matrix.

3. Experiment

To study the light transmission of asymmetric Fibonacci
multilayers in real systems, at least at low generations,
we chose PS. This material was prepared by standard
electrochemical dissolution [22, 23]. Highly boron-doped
silicon substrates (c-Si) with orientation (100) and electrical
resistivity of 0.001–0.005 � cm were used. On one side of
the c-Si wafer was deposited an aluminum film and it was
then heated at 550 ◦C for 15 min to make electrical contact.
The other side of the substrate was electrochemically etched
in an aqueous solution of HF, ethanol, and glycerol with
a volume ratio of 3:7:1 inside a Teflon cell. In addition,

in order to keep the electrolyte during the electrochemical
dissolution homogeneous, a peristaltic pump was used to
circulate the etching solution. The electrochemical attack
of the c-Si substrate starts by applying a constant current
between the electrolyte and the wafer. The multilayer is
produced by alternating the applied currents in the Fibonacci
sequence, i.e. JA = 1.7 mA cm−2 for the high refractive
index layers and JB = 45 mA cm−2 for the low refractive
index ones. At these density currents, the refractive indexes
of PS are approximately ηA = 2.12 and ηB = 1.45. For
each layer at normal incidence we must have the light phase
δA = δB = δ, for a quarter wave of the optical path length,
i.e. ηAdA = ηBdB = λ0/4 at a central wavelength λ0 =
600 nm. This means the layer thickness must be dA = 70 nm
and dB = 103 nm. Given a substrate type, an electrolyte
composition and a current density, the layer thickness of PS
is a function of time. In order to get as close as possible to
the quarter wavelength condition, a computer controlled the
electrochemical process. As it is well known, PS has a large
surface area that makes it sensitive to chemical reaction with
elements present in the atmosphere. For this reason, it was
necessary to passivate the surface after the electrochemical
attack by thermally oxidizing the samples at 300 ◦C for 15 min.
As the multilayer structure is built on the top of the c-Si
substrate, we measured reflectance instead of transmittance.
The reflectance spectra of samples were measured at room
temperature with a Shimadzu spectrophotometer at an angle
of incidence of 5◦.

4. Results

In this section we describe the theoretical and experimental
results of the light propagation through our asymmetric
Fibonacci multilayer. We use the transfer matrix formalism
to calculate transmittance spectra and PS multilayers as
experimental samples.

4.1. Theoretical details

The transmission of light through the arrays Sj is calculated
from equation (11). In the numerical calculation a normal
incidence and refractive indexes ηA = 2.12 and ηB = 1.45
were considered. The optical path length of each layer
was chosen to fulfil a quarter wavelength condition ηAdA =
ηBdB = λ0/4 with λ0 a central wavelength (i.e. δA = δB = δ

at normal incidence). In figure 1 the transmittance is shown
as a function of λ0/λ for generations: (a) S5, (b) S6, and
(c) S7 (solid lines), corresponding to 16, 26, and 42, layers,
respectively. As can be observed from figure 1, the asymmetric
Fibonacci array Sj gives rise to multiple perfect transmission
peaks that are absent in the single Fibonacci multilayers Fj

and C j (dotted lines). However, the spectra preserve the
quasiperiodic features of single Fibonacci multilayers: the self-
similar spectra every six generations, MS j = MS j+6 for any j
and the scaling factor around λ0/λ = 1 [21]. These features
come from the trace properties of the transfer matrices for
single Fibonacci multilayers given by equation (8) with the
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Figure 1. Comparison between the transmittance spectra for single
Fibonacci (dotted line) and asymmetric Fibonacci (solid line)
multilayers of generations (a) S5, (b) S6, and (c) S7. In the numerical
calculations normal incidence values ηA = 2.12 and ηB = 1.45 were
considered. Notice that some transparent states in the asymmetric
array are placed inside the gaps of the single Fibonacci multilayers.

initial conditions QA and QB, which can be considered as a
dynamical map with a constant of motion (J ) given by [3, 4]:

J = 1

4
sin2 δA sin2 δB

(
ηA cos θA

ηB cos θB
− ηB cos θB

ηA cos θA

)2

. (12)

This constant of motion is always positive and measures the
strength of the quasiperiodicity. In particular, when δA =
δB = (m + 1

2 )π with m an integer, i.e. λ0/λ = 2m + 1, J =
(u2 −1)2/4u2 and the quasiperiodicity is most effective [3]. At
these light phases, the dynamical map has a six-cycle period,
where it shows auto-similarity under a change of scale. The
scaling factor of the transmission coefficient can be exactly
calculated as [21],

K = (√[1 + 4(1 + J )2] + 2(1 + J )
)2

. (13)

The scale factor for the asymmetric Fibonacci array calculated
from equation (13) by considering normal incidence and the
above-mentioned refractive indexes gives K = 23.16. In
figure 2 the self-similarities of the asymmetric array Sj (solid
line) and of a single Fibonacci multilayer Fj (dotted line) for
generations 8 and 14 are shown. Notice the difference of scale
between figures (a) S8 and (b) S14.

These spectra are like those reported for mirror
symmetric Fibonacci arrays. The mirror symmetric array
is constructed by joining two Fibonacci substructures as
FM j = {Fj−1, Fj−2, Fj−2, Fj−1} [13, 14]. For the purpose
of comparison, in figure 3 the transmittance spectra of the
asymmetric array (a) Sj and the mirror symmetric array
(b) FM j for generation 6 are shown. Both spectra are similar,
but the positions of perfect transmission peaks are different.
That is, perfect transmission peaks occur at different light
phase conditions, even when one has considered δA = δB in
both arrays.

Figure 2. Comparison between the self-similar spectra in single
(dotted line) and asymmetric (solid line) Fibonacci multilayers for
generations (a) S8 and (b) S14. Notice the change of scale between
graphs (a) and (b).

Figure 3. Transmittance spectra of the asymmetric array (a) S6 and
the mirror symmetric array (b) FM6 . Notice that the frequency
positions of perfect transmission peaks are different for the two
cases.

Let us continue discussing the constant of motion J .
When δ = mπ , i.e. λ0/λ = 2m, the transfer matrix is
equal to the identity matrix (I ) for any j and any value u,
such that the transmission is perfect, as can be seen directly
from equations (6) and (7). In fact, the matrices QA and
QB commute at this light phase and no quasiperiodic effect is
present (J = 0). However, as is shown in figure 1, in the arrays
Sj there are more light phases with perfect light transmission
and with quasiperiodic order. We confirmed numerically that
in our asymmetric case, perfect transmission peaks take place
at light phases where the trace of M is x = ±2 and the
antitrace of M is y = 0. One solution that satisfies these matrix
properties is the identity matrix I . We propose in our case,
as a condition of perfect transmission peaks, that MS j = ±I .
Notice that in general the matrix of Fj is not the inverse of the
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Table 1. Hidden symmetry in a truncated Fibonacci multilayer S j .

Sj S j = {Fj | C j}
S4 ABAAB | BABBA
S′

4 ABAA | BBAB BA
S5 ABAABABA | BABBABAB
S

′
5 ABAABAB | ABABBAB AB

S6 ABAABABAABAAB | BABBABABBABBA
S

′
6 ABAABABAABAA | BBABBABABBAB BA

matrix of C j , only the light phases of perfect light transmission
satisfy MS j = ±I . Let us take for example the first non-
periodic generation, S4, where the elements of the transfer
matrix MS4 are given by

m11 = 1

16u3
(cos2 δ(3 + u + u2 − u3 − 4(1 + u) cos 2δ

+ (1 + u)3 cos 4δ)(−1 + u + u2 + 3u3

− 4u2(1 + u) cos 2δ + (1 + u)3 cos 4δ)

− (−1 + 5u + u2 − u3 + 4u(1 + u) cos 2δ

+ (1 + u)3 cos 4δ)2 sin2 δ),

m12 = − 1

8u3
((1 + u) cos δ(−1 − (u − 4)u

+ 4u cos 2δ + (1 + u)2 cos 4δ)

× (3 + u + u2 − u3 − 4(1 + u) cos 2δ

+ (1 + u)3 cos 4δ) sin δ),

m21 = 1

16u3
((1 + u)(−1 − (u − 4)u + 4u cos 2δ

+ (1 + u)2 cos 4δ)(−1 + u + u2 + 3u3

− 4u2(1 + u) cos 2δ + (1 + u)3 cos 4δ) sin 2δ)

and

m22 = 1

16u3
(cos2 δ(3 + u + u2 − u3 − 4(1 + u) cos 2δ

+ (1 + u)3 cos 4δ)(−1 + u + u2 + 3u3

− 4u2(1 + u) cos 2δ + (1 + u)3 cos 4δ)

− (−1 + u + 5u2 − u3 + 4u(1 + u) cos 2δ

+ (1 + u)3 cos 4δ)2 sin2 δ).

If MS4 is set to be equal to I and the system of equations
is solved, the positions of perfect light transmission are given
by

δ = 0, π, arccos ±√(
1

2(1 + 2u + u2)
+ u

2(1 + 2u + u2)

+ u2

2(1 + 2u + u2)
−

√
1 + u + u2 + u3 + u4

2(1 + 2u + u2)

)
,

arccos

[
± √(

1

2(1 + 2u + u2)
+ u

2(1 + 2u + u2)

+ u2

2(1 + 2u + u2)
+

√
1 + u + u2 + u3 + u4

2(1 + 2u + u2)

)]
.

It has been suggested that perfect transmission peaks in
Fibonacci arrays are a result of a mirror symmetry [13, 14].
We have shown that this condition is not necessary. However,
we do not discard the possibility that non-evident or hidden
symmetries can be involved in our proposed Fibonacci

Table 2. Hidden symmetry in a permuted Fibonacci multilayer S j .

Sj S j = {Fj | C j}
S4 ABAAB | BABBA
S′′

4 AABAA | BBABB
S5 ABAABABA | BABBABAB
S′′

5 BABAABAB | ABABBABA
S6 ABAABABAABAAB | BABBABABBABBA
S

′′
6 AABAABABAABAA | BBABBABABBABB

arrays Sj . To analyze hidden symmetries, we consider
two possibilities. The first one is illustrated in table 1 for
generations 4–6. If we move one position to the left of the
joining interface (|) of Fj and C j , then a kind of mirror
symmetry is found if the last two layers on the right side
are removed, this is indicated as S′

j . For every A in the left
side from the new reference interface (|) one finds a B in
the right side and vice versa. One could suppose that as the
number of layers increases the effect of taking off the last
two layers is negligible. However, we found numerically that
the truncated structures give rise to multiple peaks, but not
to perfect transmission, that is T �= 1. This means that the
complete Fibonacci structure is needed to produce transparent
states.

In the second case the last layer of C j (right side) is
moved to the first position of Fj (left side), as illustrated in
table 2 for generations 4–6, indicated as S′′

j . It is important
to mention that if we continue this specific permutation, all
the resulting sequences satisfy the condition of joining a
sequence with its conjugated one. For instance, the initial
S5 sequence is ABAABABA | BABBABAB, the result of
the first step is BABAABAB | ABABBABA, where the first
segment is the conjugate of the second segment; the result of
the second step is ABABAABA | BABABBAB, which again
preserves the conjugated structure. The procedure can be easily
continued and one can verify that in all resulting sequences
the conjugated structure is preserved. In this case, this hidden
symmetry together with the Fibonacci order gives rise to
multiple transparent states and their positions are at the same
light phase as in our asymmetric Fibonacci array. Although
in this asymmetric structure the BB dimers appear, they do
not introduce different specific resonant features because the
optical path is the same as the AA dimers. One can conclude
that if the asymmetric array has a hidden symmetry, although
not a mirror one, the Fibonacci arrays produce multiple
transparent states.

The invariance of such transparent states under these
permutations may be explained in terms of the transfer matrix
trace. Since these transparent states are obtained when the
transfer matrix is equal to the identity matrix, the trace of
such states must be ±2 because it is an invariant under
unitary transformations. Then using the cyclic property of the
trace of a product, i.e. tr(DE F) = tr(F DE) = tr(E F D),
it is clear that any permuted sequence obtained with this
procedure leads to the same transparent states, although the
whole spectra are slightly different. We need to emphasize that
this mathematical fact is valid for all kinds of sequences. Thus
in our proposed array Sj the structure is preserved under this
kind of permutation.

5
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The existence of transparent states in the cases of the
mirror and asymmetric arrays can be understood in a simple
way as a result of joining the transfer matrix of a single
Fibonacci multilayer with its inverse for a specific wavelength.
For example, if we have a given arbitrary sequence of transfer
matrices DE F , its inverse is (DE F)−1 = F−1 E−1 D−1.
When they are joined one has (DE F F−1 E−1 D−1), which is
like having a mirror symmetry. However, in the present case,
from equation (1) is clear that the inverse is equal to traversing
the interface AB in the opposite direction. Thus, the mirror
symmetry allows us to build an effective medium that acts in
the wave as the inverse of the single Fibonacci multilayer for
certain wavelengths. The conjugated mirror basically works
in a similar way, because its matrix structure is analogous to
the pure mirror due to the symmetry of the invariant J when
A is replaced by B and vice versa in equation (12), and also
T −1

i j = Tji .

4.2. Experimental details

In figure 4 the experimental (solid line) and theoretical (dashed
line) reflectance spectrum at an angle of incidence of 5◦ of the
asymmetric Fibonacci multilayer of generation S6 is shown. A
good agreement between experiment and theory is observed
as a general trend, except by a shift around λ0/λ = 1,
which increases as the wavelength decreases. This result is
a consequence of the refractive index dispersion of PS from
the visible to the ultraviolet (UV) region. Deviations from the
quarter wavelength in the light phase are expected due to the
refractive index dispersion and as we said it limits the study
to small Fibonacci generations. Notice that in general, the
experimental peaks where perfect transmission is expected to
occur are well predicted by the model. Also, for λ < λ0, a
significant reduction in the reflectance intensity is observed due
the optical absorption of PS as a function of the wavelength.
Experimentally it is difficult to show the auto-similarity of the
spectra of the asymmetric Fibonacci arrays because it occurs
strictly every six generations, which means that we had to
compare, for example, a structure of 16 layers with one of
288 layers. However, we consider that the experimental results
show that the proposed asymmetric arrays can give rise to high
transmission peaks in real systems in spite of the fact that the
ideal perfect transmission cannot be reached.

5. Conclusions

We proposed and built arrays of Fibonacci dielectric
multilayers without mirror symmetry that produced perfect
transmission of light at different wavelengths and preserved
the rich quasiperiodic properties, such as a self-similar spectra
every six generations and the scaling factor. Experimentally,
the general trends of light propagation through these
quasiperiodic structures, at least for small generations, were
verified. The main conclusion of this study is that the
mirror symmetry in arrays of dielectric layers in Fibonacci
sequences is a sufficient condition but not a necessary one
to generate multiple perfect transmission peaks. We have
found a condition for perfect transmission in our asymmetric

Figure 4. Experimental (solid line) and theoretical (dashed line)
reflectance spectra of the asymmetric Fibonacci array S6 made of
porous silicon, where λ0 = 600 nm.

case as MS j = ±I . Further studies must be performed
to see how general this condition is. Our results open
broader applications of quasiperiodic systems as filters and
microcavities of multiple frequencies.

Acknowledgments

This work was supported in part by DGAPA-UNAM under
grant IN103608. The authors would like to acknowledge
the program DGAPA-PFAMU for the support provided, to
Gildardo Casarrubias Segura for his contributions in sample
preparation and to Gabriela Palestino Escobedo for reflectance
measurements.

References

[1] Janot C 1994 Quasicrystals 2nd edn (Oxford: Clarendon)
[2] Kohmoto M, Sutherland B and Tang C 1987 Phys. Rev. B

35 1020
[3] Kohmoto M, Sutherland B and Iguchi K 1987 Phys. Rev. Lett.

58 2436
[4] Gellerman W, Kohmoto M, Sutherland B and Taylor C 1994

Phys. Rev. Lett. 72 633
[5] Merlin R, Bajema K, Clarke R, Juang F T and

Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768
[6] Todd J, Merlin R, Clarke R, Mohanty K M and Axe J D 1986

Phys. Rev. Lett. 57 1157
[7] Iguchi K 1992 Mater. Sci. Eng. 21 L13
[8] Riklund R and Severin M 1988 J. Phys. C: Solid State Phys.

21 3217
[9] Gupta S D and Ray D S 1988 Phys. Rev. B 38 3628
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